Nothing new with Intel SDSi

Intel’s latest wheeze for its CPUs is Software Defined Silicone (SDSi). The deal is that you buy the CPU at one price and then pay extra for a license to enable more stuff.

If you want the geeky stuff about how it’s supposed to work in Linux, see here. https://github.com/intel/intel-sdsi

Basically, the CPU has an interface that you can access if you have an Authentication Key Certificate (AKC) and have purchased a Capability Activation Payload (CAP) code. This will then enable extra stuff that was previously disabled. Quite what the extra stuff is remains to be seen – it could be extra instructions or enabling extra cores on a multi-core chip, or enabling more of the cache. In other words, you buy extra hardware that’s disabled, and pay extra to use it. What’s even more chilling is that you could be continuously paying licenses for the hardware you’ve bought or it’ll stop working.

It’s not actually defining the silicone in software like a FPGA, as you’d expect from euphemistic name. Software Defined Uncrippling would be more honest, but a harder sell.

But this is nothing new. I remember IBM doing this with disk drives in the 1970’s. If you upgraded your drive to double the capacity an IBM tech turned up and removed a jumper, enabling the remaining cylinders. Their justification was that double the capacity meant double the support risk – and this stuff was leased.

Please generate and paste your ad code here. If left empty, the ad location will be highlighted on your blog pages with a reminder to enter your code. Mid-Post

Fast forward 20 years to Intel CPUS. Before the Intel 80486 chips you could provide whatever input clock you wanted to your 80386, just choosing how fast it went. Intel would guarantee the chip to run at a certain speed, but that was the only limiting factor. Exceed this speed at your own risk.

The thing was that the fast and slow CPUs were theoretically identical. It’s often the case with electronic components. However, manufacturing tolerances mean that not all components end up being the same, so they’re batch tested when the come off the line. Those that pass the toughest test get stamped with a higher speed and go in the fast bucket, where they’re sold for more. Those that work just fine at a lower speed go into the slower bucket and sell for less. Fair enough. Except…

It’s also the nature of chip manufacture that the process improves over time, so more of the output meets the higher test – eventually every chip is a winner. You don’t get any of the early-run slow chips, but you’re contracted to sell them anyway. The answer is to throw some of the fast chips into the slow bucket and sell them cheap, whilst selling others at premium price to maintain your margins.

In the early 1990’s I wrote several articles about how to take advantage of this in PCW, after real-world testing of many CPUs. It later became known as overclocking. I also took the matter up with Intel at the time, and they explained that their pricing had nothing to do with manufacturing costs, and everything to do with supply and demand. Fair enough – they were honest about it. This is why AMD gives you more bang-per-buck – they choose to make things slightly better and cheaper because that maximises their profits too.

With the introduction of the 80486, the CPU clock speed was set in the package so the chip would only run at the speed you paid for. SDSi is similar, except you can adjust the setting by paying more at a later date. It also makes technical sense – producing large quantities of just one chip has huge economies of scale. The yield improves, and you just keep the fab working. In order to have a product range you simply knobble some chips to make them less desirable. And using software to knobble them is the ultimate, as you can decide at the very last minute how much you want to sell the chip for, long after it’s packaged and has left the factory.

All good? Well not by me. This only works if you’re in a near monopoly position in the first place. Microsoft scalps its customers with licenses and residual income, and Intel wants in on that game. It’s nothing about being best, it’s about holding your customers to ransom for buying into your tech in the first place. This hasn’t hurt Microsoft’s bottom line, and I doubt it’ll hurt Intel’s either.

2 Replies to “Nothing new with Intel SDSi”

  1. Intel are entitled to use whatever business model they like; and we’re entitled to use other suppliers. Near-monopoly positions are fragile and soon eroded unless propped up by governments.

    1. Quite. Intel is in danger of pushing users further towards ARM. Both Microsoft and Intel are playing a dangerous game here.
      This technology makes sense to maintain pricing differentials across a product line. It’s what else they could do with it that could lead to mass resentment.
      If decisions were made on technical merit they’d be in big trouble. It’ll be interesting to see whether AMD or Intel stock is boosted by this.

      AWS is, of course, using exactly this model for hosted services and winning.

Leave a Reply

Your email address will not be published. Required fields are marked *